Multibody Multipole Methods

نویسندگان

  • Dongryeol Lee
  • Arkadas Ozakin
  • Alexander G. Gray
چکیده

A three-body potential function can account for interactions among triples of particles which are uncaptured by pairwise interaction functions such as Coulombic or Lennard-Jones potentials. Likewise, a multibody potential of order n can account for interactions among n-tuples of particles uncaptured by interaction functions of lower orders. To date, the computation of multibody potential functions for a large number of particles has not been possible due to its O(N) scaling cost. In this paper we describe a fast tree-code for efficiently approximating multibody potentials that can be factorized as products of functions of pairwise distances. For the first time, we show how to derive a Barnes-Hut type algorithm for handling interactions among more than two particles. Our algorithm uses two approximation schemes: 1) a deterministic series expansion-based method; 2) a Monte Carlo-based approximation based on the central limit theorem. Our approach guarantees a user-specified bound on the absolute or relative error in the computed potential with an asymptotic probability guarantee. We provide speedup results on a three-body dispersion potential, the Axilrod-Teller potential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Multipole and Empirical Relations Methods for Effective Index and Dispersion Calculations of Silica-Based Photonic Crystal Fibers

In this paper, we present a solid-core Silica-based photonic crystal fiber (PCF) composed of hexagonal lattice of air-holes and calculate the effective index and chromatic dispersion of PCF for different physical parameters using the empirical relations method (ERM). These results are compared with the data obtained from the conventional multipole method (MPM). Our simulation results reveal tha...

متن کامل

The Comparison of Direct and Indirect Optimization Techniques in Equilibrium Analysis of Multibody Dynamic Systems

The present paper describes a set of procedures for the solution of nonlinear static-equilibrium problems in the complex multibody mechanical systems. To find the equilibrium position of the system, five optimization techniques are used to minimize the total potential energy of the system. Comparisons are made between these techniques. A computer program is developed to evaluate the equality co...

متن کامل

A New Guideline for the Allocation of Multipoles in the Multiple Multipole Method for Two Dimensional Scattering from Dielectrics

A new guideline for proper allocation of multipoles in the multiple multipole method (MMP) is proposed. In an ‘a posteriori’ approach, subspace fitting (SSF) is used to find the best location of multipole expansions for the two dimensional dielectric scattering problem. It is shown that the best location of multipole expansions (regarding their global approximating power) coincides with the med...

متن کامل

Efficient corrector iteration for DAE time integration in multibody dynamics

Efficient time integration is a key issue in computational multibody dynamics. Implicit time integration methods for stiff systems and constrained systems require the solution of a system of nonlinear equations in each time step. The nonlinear equations are solved iteratively by Newton type methods that are tailored to the structure of the equations of motion in multibody dynamics. In the prese...

متن کامل

A Software Environment for Analysis and Design of Multibody Systems

A powerful software package for analysis and design of multibody systems is developed , based on Rsyst 9], a software environment for scientiic and engineering applications. Multibody systems are described and stored on a Rsyst database according to the object-oriented data model of 5, 6]. Special methods to utilize the data objects of a multibody system are provided by RUS and DLR 7, 1] as Rsy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2012